MAYBE 2.128 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ LR

mainModule Monad
  ((mapAndUnzipM :: (a  ->  [(b,c)])  ->  [a ->  [([b],[c])]) :: (a  ->  [(b,c)])  ->  [a ->  [([b],[c])])

module Monad where
  import qualified Maybe
import qualified Prelude

  mapAndUnzipM :: Monad b => (a  ->  b (d,c))  ->  [a ->  b ([d],[c])
mapAndUnzipM f xs sequence (map f xs>>= return . unzip


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\(a,b)~(as,bs)→(a : as,b : bs)

is transformed to
unzip0 (a,b) ~(as,bs) = (a : as,b : bs)

The following Lambda expression
\xsreturn (x : xs)

is transformed to
sequence0 x xs = return (x : xs)

The following Lambda expression
\xsequence cs >>= sequence0 x

is transformed to
sequence1 cs x = sequence cs >>= sequence0 x



↳ HASKELL
  ↳ LR
HASKELL
      ↳ IPR

mainModule Monad
  ((mapAndUnzipM :: (c  ->  [(b,a)])  ->  [c ->  [([b],[a])]) :: (c  ->  [(b,a)])  ->  [c ->  [([b],[a])])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  mapAndUnzipM :: Monad b => (d  ->  b (a,c))  ->  [d ->  b ([a],[c])
mapAndUnzipM f xs sequence (map f xs>>= return . unzip



IrrPat Reductions:
The variables of the following irrefutable Pattern
~(as,bs)

are replaced by calls to these functions
unzip00 (as,bs) = as

unzip01 (as,bs) = bs



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
HASKELL
          ↳ BR

mainModule Monad
  ((mapAndUnzipM :: (a  ->  [(c,b)])  ->  [a ->  [([c],[b])]) :: (a  ->  [(c,b)])  ->  [a ->  [([c],[b])])

module Monad where
  import qualified Maybe
import qualified Prelude

  mapAndUnzipM :: Monad c => (d  ->  c (a,b))  ->  [d ->  c ([a],[b])
mapAndUnzipM f xs sequence (map f xs>>= return . unzip


module Maybe where
  import qualified Monad
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
HASKELL
              ↳ COR

mainModule Monad
  ((mapAndUnzipM :: (c  ->  [(b,a)])  ->  [c ->  [([b],[a])]) :: (c  ->  [(b,a)])  ->  [c ->  [([b],[a])])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  mapAndUnzipM :: Monad c => (a  ->  c (b,d))  ->  [a ->  c ([b],[d])
mapAndUnzipM f xs sequence (map f xs>>= return . unzip



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
HASKELL
                  ↳ Narrow
                  ↳ Narrow

mainModule Monad
  (mapAndUnzipM :: (a  ->  [(c,b)])  ->  [a ->  [([c],[b])])

module Monad where
  import qualified Maybe
import qualified Prelude

  mapAndUnzipM :: Monad c => (b  ->  c (d,a))  ->  [b ->  c ([d],[a])
mapAndUnzipM f xs sequence (map f xs>>= return . unzip


module Maybe where
  import qualified Monad
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(vz280, vz281), vz71, vz50, h, ba) → new_gtGtEs(vz281, vz71, vz50, h, ba)
new_gtGtEs([], :(vz710, vz711), vz50, h, ba) → new_gtGtEs(new_psPs(vz710, [], new_gtGtEs0(vz710, h, ba), h, ba), vz711, vz50, h, ba)

The TRS R consists of the following rules:

new_gtGtEs0(vz50, h, ba) → []
new_psPs(vz50, vz230, vz27, h, ba) → :(:(vz50, vz230), vz27)

The set Q consists of the following terms:

new_gtGtEs0(x0, x1, x2)
new_psPs(x0, x1, x2, x3, x4)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs1([], :(vz710, vz711), vz160, vz161, vz50, h, ba) → new_gtGtEs1(new_sequence1(vz160, vz161, vz710, h, ba), vz711, vz160, vz161, vz50, h, ba)
new_gtGtEs1(:(vz240, vz241), vz71, vz160, vz161, vz50, h, ba) → new_gtGtEs1(vz241, vz71, vz160, vz161, vz50, h, ba)

The TRS R consists of the following rules:

new_gtGtEs4([], [], vz50, h, ba) → new_gtGtEs0(vz50, h, ba)
new_sequence1(vz20, vz21, vz190, bb, bc) → new_gtGtEs2(vz20, vz21, vz190, bb, bc)
new_gtGtEs2(vz70, vz71, vz50, h, ba) → new_psPs(vz50, :(vz70, []), new_gtGtEs3(new_gtGtEs0(vz70, h, ba), vz71, vz50, h, ba), h, ba)
new_gtGtEs0(vz50, h, ba) → []
new_gtGtEs3(vz28, vz71, vz50, h, ba) → new_gtGtEs4(vz28, vz71, vz50, h, ba)
new_gtGtEs4(:(vz280, vz281), vz71, vz50, h, ba) → new_psPs(vz50, vz280, new_gtGtEs4(vz281, vz71, vz50, h, ba), h, ba)
new_psPs(vz50, vz230, vz27, h, ba) → :(:(vz50, vz230), vz27)
new_gtGtEs4([], :(vz710, vz711), vz50, h, ba) → new_gtGtEs4(new_psPs(vz710, [], new_gtGtEs0(vz710, h, ba), h, ba), vz711, vz50, h, ba)

The set Q consists of the following terms:

new_gtGtEs2(x0, x1, x2, x3, x4)
new_gtGtEs0(x0, x1, x2)
new_gtGtEs3(x0, x1, x2, x3, x4)
new_sequence1(x0, x1, x2, x3, x4)
new_psPs(x0, x1, x2, x3, x4)
new_gtGtEs4([], [], x0, x1, x2)
new_gtGtEs4([], :(x0, x1), x2, x3, x4)
new_gtGtEs4(:(x0, x1), x2, x3, x4, x5)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs5(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_sequence11(vz13, vz14, vz15, bc, bd, be) → new_gtGtEs5(vz13, vz14, vz15, bc, bd, be)
new_gtGtEs5(vz3, vz4110, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_sequence11(vz3, vz41110, vz41111, h, ba, bb)

The TRS R consists of the following rules:

new_sequence10(vz11, vz12, vz13, vz14, vz15, vz100, bc, bd, be) → new_gtGtEs8(vz13, vz14, vz15, vz11, vz12, vz100, bc, bd, be)

The set Q consists of the following terms:

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs5(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_sequence11(vz13, vz14, vz15, bc, bd, be) → new_gtGtEs5(vz13, vz14, vz15, bc, bd, be)
new_gtGtEs5(vz3, vz4110, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_sequence11(vz3, vz41110, vz41111, h, ba, bb)

R is empty.
The set Q consists of the following terms:

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
QDP
                                ↳ UsableRulesReductionPairsProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs5(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_sequence11(vz13, vz14, vz15, bc, bd, be) → new_gtGtEs5(vz13, vz14, vz15, bc, bd, be)
new_gtGtEs6(vz3, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_gtGtEs5(vz3, vz4110, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_sequence11(vz3, vz41110, vz41111, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs5(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, :(vz41110, vz41111), h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_sequence11(vz3, vz41110, vz41111, h, ba, bb)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(:(x1, x2)) = 1 + 2·x1 + x2   
POL(new_gtGtEs5(x1, x2, x3, x4, x5, x6)) = x1 + x2 + 2·x3 + x4 + x5 + x6   
POL(new_gtGtEs6(x1, x2, x3, x4, x5)) = x1 + 2·x2 + x3 + x4 + x5   
POL(new_gtGtEs7(x1, x2, x3, x4, x5, x6)) = 1 + x1 + 2·x2 + 2·x3 + x4 + x5 + x6   
POL(new_sequence11(x1, x2, x3, x4, x5, x6)) = x1 + 2·x2 + 2·x3 + x4 + x5 + x6   



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
QDP
                                    ↳ DependencyGraphProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)
new_gtGtEs6(vz3, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)
new_sequence11(vz13, vz14, vz15, bc, bd, be) → new_gtGtEs5(vz13, vz14, vz15, bc, bd, be)
new_gtGtEs5(vz3, vz4110, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
QDP
                                          ↳ NonTerminationProof
                                        ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs6(vz3, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_gtGtEs6(vz3, vz4111, h, ba, bb) → new_gtGtEs6(vz3, vz4111, h, ba, bb)

The TRS R consists of the following rules:none


s = new_gtGtEs6(vz3, vz4111, h, ba, bb) evaluates to t =new_gtGtEs6(vz3, vz4111, h, ba, bb)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_gtGtEs6(vz3, vz4111, h, ba, bb) to new_gtGtEs6(vz3, vz4111, h, ba, bb).





↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ AND
                                        ↳ QDP
QDP
                                          ↳ NonTerminationProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) → new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)

The TRS R consists of the following rules:none


s = new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) evaluates to t =new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb) to new_gtGtEs7(vz3, vz41110, vz41111, h, ba, bb).





↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_foldr(:(vz900, vz901), h, ba) → new_foldr(vz901, h, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs9(vz50, :(vz510, vz511), h, ba) → new_gtGtEs9(vz510, vz511, h, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs10([], :(vz190, vz191), vz20, vz21, h, ba) → new_gtGtEs10(new_sequence1(vz20, vz21, vz190, h, ba), vz191, vz20, vz21, h, ba)
new_gtGtEs10(:(vz180, vz181), vz19, vz20, vz21, h, ba) → new_gtGtEs10(vz181, vz19, vz20, vz21, h, ba)

The TRS R consists of the following rules:

new_gtGtEs4([], [], vz50, bb, bc) → new_gtGtEs0(vz50, bb, bc)
new_sequence1(vz20, vz21, vz190, h, ba) → new_gtGtEs2(vz20, vz21, vz190, h, ba)
new_gtGtEs2(vz70, vz71, vz50, bb, bc) → new_psPs(vz50, :(vz70, []), new_gtGtEs3(new_gtGtEs0(vz70, bb, bc), vz71, vz50, bb, bc), bb, bc)
new_gtGtEs0(vz50, bb, bc) → []
new_gtGtEs3(vz28, vz71, vz50, bb, bc) → new_gtGtEs4(vz28, vz71, vz50, bb, bc)
new_gtGtEs4(:(vz280, vz281), vz71, vz50, bb, bc) → new_psPs(vz50, vz280, new_gtGtEs4(vz281, vz71, vz50, bb, bc), bb, bc)
new_psPs(vz50, vz230, vz27, bb, bc) → :(:(vz50, vz230), vz27)
new_gtGtEs4([], :(vz710, vz711), vz50, bb, bc) → new_gtGtEs4(new_psPs(vz710, [], new_gtGtEs0(vz710, bb, bc), bb, bc), vz711, vz50, bb, bc)

The set Q consists of the following terms:

new_gtGtEs2(x0, x1, x2, x3, x4)
new_gtGtEs3(x0, x1, x2, x3, x4)
new_gtGtEs4(:(x0, x1), x2, x3, x4, x5)
new_gtGtEs0(x0, x1, x2)
new_sequence1(x0, x1, x2, x3, x4)
new_gtGtEs4([], :(x0, x1), x2, x3, x4)
new_psPs(x0, x1, x2, x3, x4)
new_gtGtEs4([], [], x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ DependencyGraphProof
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs11(:(vz90, vz91), vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb) → new_gtGtEs11(vz91, vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb)
new_gtGtEs11([], :(vz100, vz101), vz11, vz12, vz13, vz14, vz15, h, ba, bb) → new_gtGtEs11(new_sequence10(vz11, vz12, vz13, vz14, vz15, vz100, h, ba, bb), vz101, vz11, vz12, vz13, vz14, vz15, h, ba, bb)

The TRS R consists of the following rules:

new_sequence10(vz11, vz12, vz13, vz14, vz15, vz100, h, ba, bb) → new_gtGtEs8(vz13, vz14, vz15, vz11, vz12, vz100, h, ba, bb)

The set Q consists of the following terms:

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ UsableRulesProof
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs11(:(vz90, vz91), vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb) → new_gtGtEs11(vz91, vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb)

The TRS R consists of the following rules:

new_sequence10(vz11, vz12, vz13, vz14, vz15, vz100, h, ba, bb) → new_gtGtEs8(vz13, vz14, vz15, vz11, vz12, vz100, h, ba, bb)

The set Q consists of the following terms:

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QReductionProof
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs11(:(vz90, vz91), vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb) → new_gtGtEs11(vz91, vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb)

R is empty.
The set Q consists of the following terms:

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_sequence10(x0, x1, x2, x3, x4, x5, x6, x7, x8)



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
QDP
                                    ↳ QDPSizeChangeProof
                      ↳ QDP
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs11(:(vz90, vz91), vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb) → new_gtGtEs11(vz91, vz10, vz11, vz12, vz13, vz14, vz15, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ IPR
        ↳ HASKELL
          ↳ BR
            ↳ HASKELL
              ↳ COR
                ↳ HASKELL
                  ↳ Narrow
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof
                  ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs12([], vz3, vz411, vz50, :(vz510, vz511), h, ba, bb) → new_gtGtEs12([], vz3, vz411, vz510, vz511, h, ba, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs